Results

Theses

2022

StudentTitleTypeLocationLink
Lukas SteindlOptimizing deep neural networks for efficient dronebased ragweed detectionMasterTU Wienhttps://doi.org/10.34726/hss.2022.79705
Nikolas AlgePower Profiling of Machine Learning Accelerators using MLPerfBachelorTU Wienhttps://doi.org/10.5281/zenodo.7323206

2021

StudentTitleTypeLocationLink
Andreas GlinsererAutopruning mit Intel Distiller und Evaluation auf einem Jetson Xavier AGXMasterTU Wienhttps://doi.org/10.34726/hss.2021.90301
Bernhard HaasCompressing MobileNet With Shunt Connections for NVIDIA HardwareMasterTU Wienhttps://publik.tuwien.ac.at/files/publik_295948.pdf
Michael OpitzEfficient Ensembles for Deep LearningPh.DTU Graz
Matvey IvanovEmbedded Machine Learning DemonstratorBachelorTU Wienhttps://publik.tuwien.ac.at/files/publik_296007.pdf
Dominik DallingerFPGA optimized dynamic post-training quantization of TinyYoloV3BachelorTU Wienhttps://publik.tuwien.ac.at/files/publik_296008.pdf
Amid MozelliA Study on Confidence: an Unsupervised Multi-Agent Machine Learning ExperimentBachelorTU Wien
Lukas BaischerFPGA Based Embedded Neural Network Object DetectorMasterTU Wienhttps://doi.org/10.34726/hss.2021.69314

2020

StudentTitleTypeLocationLink
Kaleab Alemayehu KinfuLifelong Learning for Autonomous Vehicles: Monocular Depth EstimationMasterTU Graz
Anam ZahraAutonomous Vehicle Self-localization in Noisy EnvironmentsMasterTU Graz
Marco WuschnigAuswertung verschiedener Methoden der Hyperparameteroptimierung in Machine LearningBachelorTU Wienhttps://publik.tuwien.ac.at/files/publik_295896.pdf
Julian RothAuswertung von Cloudbasierten Machine Learning Frameworks für Supervised Machine LearningBachelorTU Wienhttps://publik.tuwien.ac.at/files/publik_295897.pdf
Rudolf WörndleContinual Domain-Incremental Learning for Object DetectionMasterTU Graz

Software

TitleDescriptionLink
Blackthorn Latency Estimation Toolkit for Neural Networks (Nvidia) https://github.com/embedded-machine-learning/blackthorn
Embedded Machine Learning Scripts and Guides We collect scripts and guides that help us in our everyday work to setup software and frameworks. This repository is also the source of an EML Toolbox that aims to easyily implement machine learning toolchains. https://github.com/embedded-machine-learning/scripts-and-guides
ANNETTE Accurate Neural Network Execution Time Estimation https://github.com/embedded-machine-learning/annette
Re-Implementation of SqueezeNas SqueezeNAS Repository with reimplementation for a custom semenatic segementation task https://github.com/embedded-machine-learning/squeezenas_train
EML Mobile Phone Photo Detection Application A mobile phone application for applying detection networks on captured fotos and camera streams https://github.com/embedded-machine-learning/eml-mobile-photo-app
Shunt Connector Neural network compression technique called 'Shunt connection' using Keras and TensorFlow 2.x as its backend. https://github.com/embedded-machine-learning/ShuntConnector
MobileNetV3-Segmentation-Keras Semantic segmentation version of the MobileNetV3 architecture (source), which is inspired by the DeeplabV3 architecture. The model is implemented using Keras and TensorFlow 2.x. https://github.com/embedded-machine-learning/MobileNetV3-Segmentation-Keras

Publications

See the Publication section.